Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445683

RESUMO

Polylactide (PLA) is a biodegradable thermoplastic aliphatic polyester. The thermal stability and crystallization behavior of PLA are extremely sensitive to storage, processing, and usage conditions. This work systematically studied the thermal stability and crystallization behavior of poly(L-lactide) (PLLA), poly(D-lactide) (PDLA), and a PLLA/PDLA (LD) blend, which were stored under two sets of laboratory storage conditions: (1) stored in a vacuum-free desiccator and (2) stored in vacuum-sealed bags. Both were stored at room temperature for 3 years. Gel permeation chromatography results revealed that the PLLA, PDLA, and LD samples hydrolyzed slowly when stored in vacuum-sealed bags and degraded significantly when stored in a vacuum-free desiccator; this process significantly reduced the thermal stability of the samples stored in the vacuum-free desiccator. Owing to hydrolysis, the levorotation and dextrorotation (L- and D-) molecular chains were shortened; consequently, more nuclei were formed, and this caused the melting points of the PLLA, PDLA, and LD samples to decrease and the melting enthalpy of the crystals in these samples to increase. Wide-angle X-ray diffraction analysis revealed that when the L- and D- molecular chains were packed side by side to form stereocomplex crystals and the randomly arranged L- and D- molecular chains were easy hydrolyzed and degraded, this interfered with the formation of homocrystals in LD. When PLLA, PDLA, and LD samples are stored in a vacuum-free desiccator, they will be significantly hydrolyzed, resulting in the formation of only stereocomplex crystals, and no homocrystals are observed.

2.
Polymers (Basel) ; 11(9)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540132

RESUMO

A series of poly(l-lactide)/poly(d-lactide) blended chips (LDC), as-spun LD fibers (LDA) and hot-drawn LD fibers (LDH) were prepared for investigating the homocrystallization and stereocomplex crystallization behaviors of LDA and LDH fibers during heating. Modulated differential scanning calorimetry (MDSC), hot stage polarized microscopy (HSPM), and real-time wide-angle X-ray diffraction (WAXD) were used for studying the crystallization and melting behaviors, fiber morphology, and crystalline structure evolution of the LDA and LDH fibers' homocrystals and stereocomplex crystals during heating. The molecular chain orientations of the LDA and LDH fibers were obtained through spinning and improved through the hot drawing processes. When the molecular chain was oriented on the fiber axis, the homocrystals and stereocomplex crystals of the fibers began to form in turn as the heating temperature exceeded the glass transition temperature of the fiber. The side-by-side packing of the molecular chains was promoted by mixing the molecular chains with the extrusion screw during the spinning process, facilitating stereocomplex crystallization. When the LDA fiber was heated above the glass transition temperature of the fiber, movement of the fiber molecular chain-including molecular chain orientation and relaxation, as well as crystallization, melting, and recrystallization of homocrystals and stereocomplex crystals-were investigated through HSPM. MDSC and real-time WAXD were used to observe the molecular chains of the melted poly(l-lactide) and poly(d-lactide) homocrystals of the fibers rearranging and transiting to form stereocomplex crystals during heating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...